A robust bi-objective mathematical model for disaster rescue units allocation and scheduling with learning effect
dc.authorid | Nadi Serhan Aydın / 0000-0002-1453-0016 | en_US |
dc.authorscopusid | Nadi Serhan Aydın / 55904216900 | |
dc.authorwosid | Nadi Serhan Aydın / X-8938-2018 | |
dc.contributor.author | Tirkolaee, Erfan Babaee | |
dc.contributor.author | Aydın, Nadi Serhan | |
dc.contributor.author | Ranjbar-Bourani, Mehdi | |
dc.contributor.author | Weber, Gerhard Wilhelm | |
dc.date.accessioned | 2020-09-30T09:10:19Z | |
dc.date.available | 2020-09-30T09:10:19Z | |
dc.date.issued | 2020 | en_US |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.description.abstract | This paper proposes a novel bi-objective mixed-integer linear programming (MILP) model for allocating and scheduling disaster rescue units considering the learning effect. When a natural phenomenon (e.g., earthquake or flood) occurs, the presented decision support model is expected to help decision-makers of emergency relief centers to provide efficient planning for rescue units to minimize the total weighted completion time of rescue operations, as well as the total delay in rescue operations. The problem has some features in common with unrelated parallel machine scheduling (UPMS) problem and traveling salesman problem (TSP). To deal with the inherent uncertainty and bi-objective nature of the problem, an uncertainty-set based robust optimization technique and multi-choice goal programming (MCGP) with utility functions are applied. To demonstrate the applicability of the proposed model, a real case study in Mazandaran province in Iran is presented. The computational results confirm the high complexity of the problem and the significant impacts of the uncertainty on the solution. Moreover, the analytical results provide useful insights to decision-makers for disastrous situations. | en_US |
dc.identifier.citation | Tirkolaee, E. B., Aydın, N. S., Ranjbar-Bourani, M., & Weber, G. W. (2020). A robust bi-objective mathematical model for disaster rescue units allocation and scheduling with learning effect. Computers & Industrial Engineering, 106790. | en_US |
dc.identifier.doi | 10.1016/j.cie.2020.106790 | en_US |
dc.identifier.issn | 0360-8352 | en_US |
dc.identifier.scopus | 2-s2.0-85091222752 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.cie.2020.106790 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/1123 | |
dc.identifier.volume | 149 | en_US |
dc.identifier.wos | WOS:000582320000037 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Aydın, Nadi Serhan | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | Computers and Industrial Engineering | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Disaster Rescue Units | en_US |
dc.subject | Mixed-Integer Linear Programming | en_US |
dc.subject | Multi-Choice Goal Programming With Utility Functions | en_US |
dc.subject | Resource Allocation and Scheduling | en_US |
dc.subject | Robust Optimization | en_US |
dc.title | A robust bi-objective mathematical model for disaster rescue units allocation and scheduling with learning effect | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- Ä°sim:
- 1-s2.0-S036083522030499X-main.pdf
- Boyut:
- 1.83 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full text
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- Ä°sim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: