An integration of neural network and shuffled frog-leaping algorithm for CNC machining monitoring
dc.authorid | Erfan Babaee Tirkolaee / 0000-0003-1664-9210 | |
dc.authorscopusid | Erfan Babaee Tirkolaee / 57196032874 | |
dc.authorwosid | Erfan Babaee Tirkolaee / U-3676-2017 | |
dc.contributor.author | Goli, Alireza | |
dc.contributor.author | Tirkolaee, Erfan Babaee | |
dc.contributor.author | Weber, Gerhard Wilhelm | |
dc.date.accessioned | 2021-03-22T12:09:55Z | |
dc.date.available | 2021-03-22T12:09:55Z | |
dc.date.issued | 2021 | en_US |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.description.abstract | This paper addresses Acoustic Emission (AE) from Computer Numerical Control (CNC) machining operations. Experimental measurements are performed on the CNC lathe sensors to provide the power consumption data. To this end, a hybrid methodology based on the integration of an Artificial Neural Network (ANN) and a Shuffled Frog-Leaping Algorithm (SFLA) is applied to the data resulting from these measurements for data fusion from the sensors which is called SFLA-ANN. The initial weights of ANN are selected using SFLA. The goal is to assess the potency of the signal periodic component among these sensors. The efficiency of the proposed SFLA-ANN method is analyzed compared to hybrid methodologies of Simulated Annealing (SA) algorithm and ANN (SA-ANN) and Genetic Algorithm (GA) and ANN (GA-ANN). | en_US |
dc.identifier.citation | Goli, A., Tirkolaee, E. B., & Weber, G. W. (2021). An Integration of Neural Network and Shuffled Frog-Leaping Algorithm for CNC Machining Monitoring. Foundations of Computing and Decision Sciences, 46(1), 27-42. | en_US |
dc.identifier.doi | 10.2478/fcds-2021-0003 | en_US |
dc.identifier.endpage | 42 | en_US |
dc.identifier.issn | 0867-6356 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85102559472 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 27 | en_US |
dc.identifier.uri | https://doi.org/10.2478/fcds-2021-0003 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/1624 | |
dc.identifier.volume | 46 | en_US |
dc.identifier.wos | WOS:000626159100003 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Tirkolaee, Erfan Babaee | |
dc.language.iso | en | en_US |
dc.publisher | Sciendo | en_US |
dc.relation.ispartof | Foundations of Computing and Decision Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artificial Neural Network | en_US |
dc.subject | CNC Machining; Multi-Sensor Data Fusion | en_US |
dc.subject | Genetic Algorithm | en_US |
dc.subject | Shuffled Frog-Leaping Algorithm | en_US |
dc.subject | Simulated Annealing | en_US |
dc.title | An integration of neural network and shuffled frog-leaping algorithm for CNC machining monitoring | en_US |
dc.type | Article | en_US |