A critical assessment of consumer reviews: A hybrid NLP-based methodology
dc.authorid | Dursun Delen / 0000-0001-8857-5148 | en_US |
dc.authorscopusid | Dursun Delen / 55887961100 | en_US |
dc.authorwosid | Dursun Delen / AGA-9892-2022 | |
dc.contributor.author | Biswas, Baidyanath | |
dc.contributor.author | Sengupta, Pooja | |
dc.contributor.author | Kumar, Ajay | |
dc.contributor.author | Delen, Dursun | |
dc.contributor.author | Gupta, Shivam | |
dc.date.accessioned | 2022-06-07T07:01:22Z | |
dc.date.available | 2022-06-07T07:01:22Z | |
dc.date.issued | 2022 | en_US |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Bölümü | en_US |
dc.description.abstract | Online reviews are integral to consumer decision-making while purchasing products on an e-commerce platform. Extant literature has conclusively established the effects of various review and reviewer related predictors towards perceived helpfulness. However, background research is limited in addressing the following problem: how can readers interpret the topical summary of many helpful reviews that explain multiple themes and consecutively focus in-depth? To fill this gap, we drew upon Shannon's Entropy Theory and Dual Process Theory to propose a set of predictors using NLP and text mining to examine helpfulness. We created four predictors - review depth, review divergence, semantic entropy and keyword relevance to build our primary empirical models. We also reported interesting findings from the interaction effects of the reviewer's credibility, age of review, and review divergence. We also validated the robustness of our results across different product categories and higher thresholds of helpfulness votes. Our study contributes to the electronic commerce literature with relevant managerial and theoretical implications through these findings. © 2022 Elsevier B.V. | en_US |
dc.identifier.citation | Biswas, B., Sengupta, P., Kumar, A., Delen, D., & Gupta, S. (2022). A critical assessment of consumer reviews: A hybrid NLP-based methodology. Decision Support Systems, doi:10.1016/j.dss.2022.113799 | en_US |
dc.identifier.doi | 10.1016/j.dss.2022.113799 | en_US |
dc.identifier.issn | 0167-9236 | en_US |
dc.identifier.scopus | 2-s2.0-85129723722 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.dss.2022.113799 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/2802 | |
dc.identifier.wos | WOS:000823389200005 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Delen, Dursun | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartof | Decision Support Systems | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Natural Language Processing (NLP) | en_US |
dc.subject | Online Reviews | en_US |
dc.subject | Shannon's Entropy | en_US |
dc.subject | Text Analytics | en_US |
dc.subject | Zero-Truncated Regression | en_US |
dc.title | A critical assessment of consumer reviews: A hybrid NLP-based methodology | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 1-s2.0-S0167923622000707-main.pdf
- Boyut:
- 2.35 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: