Algorithms for inversion mod p(k)

Yükleniyor...
Küçük Resim

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee Computer Soc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This article describes and analyzes all existing algorithms for computing x = a(-1) omod pk THORN for a prime p, and also introduces a new algorithm based on the exact solution of linear equations using p-adic expansions. The algorithm starts with the initial value c = a(-1) omod pTHORN and iteratively computes the digits of the inverse x = a(-1) omod pk THORN in base p. The mod 2 version of the algorithm is more efficient than all existing algorithms for small values of k. Moreover, it stands out as being the only one that works for any p, any k, and digit-by-digit. While the new algorithm is asymptotically worse off, it requires the minimal number of arithmetic operations (just a single addition) per step, as compared to all existing algorithms.

Açıklama

Koç, Çetin Kaya (isu author)
Koç, Cetin/0000-0002-2572-9565

Anahtar Kelimeler

Number-Theoretic Algorithms, Computer Arithmetic, Multiplicative Inverse

Kaynak

Ieee Transactions On Computers

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

69

Sayı

6

Künye

Koc, C. K. (2020). Algorithms for Inversion Mod p(k). IEEE TRANSACTIONS ON COMPUTERS, 69(6), 907–913. https://doi.org/10.1109/TC.2020.2970411