Finite element formulation of metal foam microbeams via modified strain gradient theory

dc.authoridArmağan Karamanlı / 0000-0003-3990-6515en_US
dc.authorscopusidArmağan Karamanlı / 55659970400en_US
dc.authorwosidArmağan Karamanlı / AGG-2487-2022
dc.contributor.authorKaramanlı, Armağan
dc.contributor.authorVo, Thuc P.
dc.contributor.authorCivalek, Ömer
dc.date.accessioned2022-06-02T10:34:43Z
dc.date.available2022-06-02T10:34:43Z
dc.date.issued2022en_US
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Bölümüen_US
dc.description.abstractSize-dependent behaviours of metal foam microbeams with three different porosity distribution models are studied in this paper. Based on the finite element model, a normal and shear deformation theory has been employed for the first time to investigate their structural behaviours by using modified strain gradient theory and considering the effects of variable material length scale parameter. The equations of motion and boundary conditions of system are derived from Hamilton’s principle. Finite element models are presented for the computation of deflections, vibration frequencies and buckling loads of the metal foam microbeams. The verification of proposed models is carried out with a comparison of the numerical results available in the literature. Calculations using the different parameters reveal the effects of the porosity parameters (distribution and coefficient), small size, boundary conditions and Poisson’s ratio on the displacements, frequencies and buckling loads of metal foam microbeams. Some benchmark results of these structures for both models (modified couple stress theory and modified strain gradient theory with constant and variable material length scale parameter) and with/without Poison’s effect are provided for future study. © 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.en_US
dc.identifier.citationKaramanli, A., Vo, T. P., & Civalek, O. (2022). Finite element formulation of metal foam microbeams via modified strain gradient theory. Engineering with Computers, doi:10.1007/s00366-022-01666-xen_US
dc.identifier.doi10.1007/s00366-022-01666-xen_US
dc.identifier.issn0177-0667en_US
dc.identifier.scopus2-s2.0-85130154007en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1007/s00366-022-01666-x
dc.identifier.urihttps://hdl.handle.net/20.500.12713/2784
dc.identifier.wosWOS:000796316400001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorKaramanlı, Armağan
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofEngineering with Computersen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGradient Elasticityen_US
dc.subjectMetal Foam Microbeamsen_US
dc.subjectVariable Material Length Scale Parameteren_US
dc.titleFinite element formulation of metal foam microbeams via modified strain gradient theoryen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
Karamanli-2022-Finite-element-formulation-of-metal.pdf
Boyut:
1.9 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: