Finite element formulation of metal foam microbeams via modified strain gradient theory
dc.authorid | Armağan Karamanlı / 0000-0003-3990-6515 | en_US |
dc.authorscopusid | Armağan Karamanlı / 55659970400 | en_US |
dc.authorwosid | Armağan Karamanlı / AGG-2487-2022 | |
dc.contributor.author | Karamanlı, Armağan | |
dc.contributor.author | Vo, Thuc P. | |
dc.contributor.author | Civalek, Ömer | |
dc.date.accessioned | 2022-06-02T10:34:43Z | |
dc.date.available | 2022-06-02T10:34:43Z | |
dc.date.issued | 2022 | en_US |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Bölümü | en_US |
dc.description.abstract | Size-dependent behaviours of metal foam microbeams with three different porosity distribution models are studied in this paper. Based on the finite element model, a normal and shear deformation theory has been employed for the first time to investigate their structural behaviours by using modified strain gradient theory and considering the effects of variable material length scale parameter. The equations of motion and boundary conditions of system are derived from Hamilton’s principle. Finite element models are presented for the computation of deflections, vibration frequencies and buckling loads of the metal foam microbeams. The verification of proposed models is carried out with a comparison of the numerical results available in the literature. Calculations using the different parameters reveal the effects of the porosity parameters (distribution and coefficient), small size, boundary conditions and Poisson’s ratio on the displacements, frequencies and buckling loads of metal foam microbeams. Some benchmark results of these structures for both models (modified couple stress theory and modified strain gradient theory with constant and variable material length scale parameter) and with/without Poison’s effect are provided for future study. © 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature. | en_US |
dc.identifier.citation | Karamanli, A., Vo, T. P., & Civalek, O. (2022). Finite element formulation of metal foam microbeams via modified strain gradient theory. Engineering with Computers, doi:10.1007/s00366-022-01666-x | en_US |
dc.identifier.doi | 10.1007/s00366-022-01666-x | en_US |
dc.identifier.issn | 0177-0667 | en_US |
dc.identifier.scopus | 2-s2.0-85130154007 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00366-022-01666-x | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/2784 | |
dc.identifier.wos | WOS:000796316400001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Karamanlı, Armağan | |
dc.language.iso | en | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.relation.ispartof | Engineering with Computers | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Gradient Elasticity | en_US |
dc.subject | Metal Foam Microbeams | en_US |
dc.subject | Variable Material Length Scale Parameter | en_US |
dc.title | Finite element formulation of metal foam microbeams via modified strain gradient theory | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- Karamanli-2022-Finite-element-formulation-of-metal.pdf
- Boyut:
- 1.9 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: