Generalized automated energy function selection for protein structure prediction on 2D and 3D HP models

dc.authoridMustafa Mısır / 0000-0002-6885-6775en_US
dc.authorscopusidMustafa Mısır / 36458858100en_US
dc.authorwosidMustafa Mısır / A-6739-2010en_US
dc.contributor.authorMısır, Mustafa
dc.date.accessioned2022-03-16T05:33:43Z
dc.date.available2022-03-16T05:33:43Z
dc.date.issued2021en_US
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractThe present work applies Algorithm Selection for automatically determining the best energy functions for search algorithms on Protein Structure Prediction. Protein Structure Prediction is a critical problem concerned with exploring the structure of a protein, given an amino acid sequence. For the sake of improved search performance, various models have been introduced such as the Hydrophobic Polar (HP) models. These models make PSP computationally approachable. There exists a large suite of algorithms introduces to solve PSP. As in all other problem domains, it is possible to see that the PSP algorithms considered to be strong can fail to address some problem instances. One way of providing further performance improvements without devising a new algorithm is to automatically determine the best possible algorithm for a given PSP problem instance. Algorithm Selection focuses on automatically choosing algorithms for any given problem solving scenario. Unlike the traditional use of AS, this study accommodates Algorithm Selection for specifying the best suited energy function used for search. The process is designed as a rank prediction task on 7 energy functions for Iterated Local Search as the optimization algorithm. The idea is to assess the best energy function that can guide the search process of Iterated Local Search on a per-instance basis. An experimental analysis is reported on 30 PSP instances, each half belongs to the 2D and 3D HP models, respectively. The results show that Algorithm Selection is capable to offer proper selection of the energy functions with robustness. Additionally, a brief algorithm and instance analysis is reported on the instance hardness and matching algorithmic capabilities. This analysis further provides insights on the instance hardness besides instance and algorithm similarities. © 2021 IEEE.en_US
dc.identifier.citationMisir, M. (2021). Generalized automated energy function selection for protein structure prediction on 2D and 3D HP models. Paper presented at the 2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings, doi:10.1109/SSCI50451.2021.9659895 Retrieved from www.scopus.comen_US
dc.identifier.doi10.1109/SSCI50451.2021.9659895en_US
dc.identifier.isbn978-172819048-8
dc.identifier.scopus2-s2.0-85125756097en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/SSCI50451.2021.9659895
dc.identifier.urihttps://hdl.handle.net/20.500.12713/2557
dc.identifier.wosWOS:000824464300076en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorMısır, Mustafa
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject2D HP Modelen_US
dc.subject3D HP Modelen_US
dc.subjectAlgorithm Selectionen_US
dc.subjectEnegry Functionen_US
dc.subjectProtein Structure Predictionen_US
dc.titleGeneralized automated energy function selection for protein structure prediction on 2D and 3D HP modelsen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
16.pdf
Boyut:
2.08 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: