Reinforcement learning and trustworthy autonomy

Yükleniyor...
Küçük Resim

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer International Publishing

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Cyber-Physical Systems (CPS) possess physical and software interdependence and are typically designed by teams of mechanical, electrical, and software engineers. The interdisciplinary nature of CPS makes them difficult to design with safety guarantees. When autonomy is incorporated, design complexity and, especially, the difficulty of providing safety assurances are increased. Visionbased reinforcement learning is an increasingly popular family of machine learning algorithms that may be used to provide autonomy for CPS. Understanding how visual stimuli trigger various actions is critical for trustworthy autonomy. In this chapter we introduce reinforcement learning in the context of Microsoft's AirSim drone simulator. Specifically, we guide the reader through the necessary steps for creating a drone simulation environment suitable for experimenting with visionbased reinforcement learning. We also explore how existing vision-oriented deep learning analysis methods may be applied toward safety verification in vision-based reinforcement learning applications. © Springer Nature Switzerland AG 2018.

Açıklama

Koc, Cetin Kaya (isu author)

Anahtar Kelimeler

Kaynak

Cyber-Physical Systems Security

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

Sayı

Künye

Luo, J., Green, S., Feghali, P., Legrady, G., & Koç, Ç. K. (2018). Reinforcement learning and trustworthy autonomy. In Cyber-Physical Systems Security (pp. 191-217). Springer, Cham.