An augmented Tabu search algorithm for the green inventory-routing problem with time windows
dc.authorid | Erfan Babaee Tirkolaee / 0000-0003-1664-9210 | |
dc.authorscopusid | Erfan Babaee Tirkolaee / 57196032874 | |
dc.authorwosid | Erfan Babaee Tirkolaee / U-3676-2017 | |
dc.contributor.author | Alinaghian, Mahdi | |
dc.contributor.author | Tirkolaee, Erfan Babaee | |
dc.contributor.author | Dezaki, Zahra Kaviani | |
dc.contributor.author | Hejazi, Seyed Reza | |
dc.contributor.author | Ding, Weiping | |
dc.date.accessioned | 2020-11-30T12:11:51Z | |
dc.date.available | 2020-11-30T12:11:51Z | |
dc.date.issued | 2021 | en_US |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.description.abstract | Transportation allocates a significant proportion of Gross Domestic Product (GDP) to each country, and it is one of the largest consumers of petroleum products. On the other hand, many efforts have been made recently to reduce Greenhouse Gas (GHG) emissions by vehicles through redesigning and planning transportation processes. This paper proposes a novel Mixed-Integer Linear Programming (MILP) mathematical model for Green Inventory-Routing Problem with Time Windows (GIRP-TW) using a piecewise linearization method. The objective is to minimize the total cost including fuel consumption cost, driver cost, inventory cost and usage cost of vehicles taking into account factors such as the volume of vehicle load, vehicle speed and road slope. To solve the problem, three meta-heuristic algorithms are designed including the original and augmented Tabu Search (TS) algorithms and Differential Evolution (DE) algorithm. In these algorithms, three heuristic methods of improved Clarke-Wright algorithm, improved Push-Forward Insertion Heuristic (PFIH) algorithm and heuristic speed optimization algorithm are also applied to deal with the routing structure of the problem. The performance of the proposed solution techniques is analyzed using some well-known test problems and algorithms in the literature. Furthermore, a statistical test is conducted to efficiently provide the required comparisons for large-sized problems. The obtained results demonstrate that the augmented TS algorithm is the best method to yield high-quality solutions. Finally, a sensitivity analysis is performed to investigate the variability of the objective function. | en_US |
dc.identifier.citation | Alinaghian, M., Tirkolaee, E. B., Dezaki, Z. K., Hejazi, S. R., & Ding, W. (2020). An Augmented Tabu Search Algorithm for the Green Inventory-Routing Problem with Time Windows. Swarm and Evolutionary Computation, 100802. | en_US |
dc.identifier.doi | 10.1016/j.swevo.2020.100802 | en_US |
dc.identifier.issn | 2210-6502 | en_US |
dc.identifier.scopus | 2-s2.0-85096490073 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://www.doi.org/10.1016/j.swevo.2020.100802 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/1259 | |
dc.identifier.volume | 60 | en_US |
dc.identifier.wos | WOS:000662077300020 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Tirkolaee, Erfan Babaee | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartof | Swarm and Evolutionary Computation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Comprehensive Modal Emission Model | en_US |
dc.subject | Differential Evolution | en_US |
dc.subject | Fuel Consumption | en_US |
dc.subject | Inventory-Routing Problem | en_US |
dc.subject | Tabu Search | en_US |
dc.subject | Time Windows | en_US |
dc.title | An augmented Tabu search algorithm for the green inventory-routing problem with time windows | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- Ä°sim:
- 1-s2.0-S2210650220304557-main.pdf
- Boyut:
- 3.71 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- Ä°sim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: