Multi-step gH-difference-based methods for fuzzy differential equations
Yükleniyor...
Dosyalar
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Nature
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The main purpose of this paper is to introduce fuzzy Adams–Bashforth (A–B) and fuzzy Adams–Moulton (A–M) methods based on the generalized Hukuhara (gH)-differentiability and employ them as the predictor and corrector, respectively. The local truncation error, stability and convergence of these methods are discussed in the sequel. Finally, some fuzzy linear and nonlinear initial value problems (IVPs) are solved. The numerical results obtained here show that our methods provide a suitable approximation for the exact solution. © 2023, The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional.
Açıklama
Anahtar Kelimeler
Fuzzy Adams–Bashforth Method, Fuzzy Adams–Moulton Method, Generalized Hukuhara Difference, Local Truncation Error
Kaynak
computational and applied mathematics
WoS Q Değeri
N/A
Scopus Q Değeri
Q2
Cilt
42
Sayı
1
Künye
Safikhani, L., Vahidi, A., Allahviranloo, T., & Afshar Kermani, M. (2023). Multi-step gH-difference-based methods for fuzzy differential equations. Computational and Applied Mathematics, 42(1), 1-30.