Multi-step gH-difference-based methods for fuzzy differential equations

Yükleniyor...
Küçük Resim

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Nature

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The main purpose of this paper is to introduce fuzzy Adams–Bashforth (A–B) and fuzzy Adams–Moulton (A–M) methods based on the generalized Hukuhara (gH)-differentiability and employ them as the predictor and corrector, respectively. The local truncation error, stability and convergence of these methods are discussed in the sequel. Finally, some fuzzy linear and nonlinear initial value problems (IVPs) are solved. The numerical results obtained here show that our methods provide a suitable approximation for the exact solution. © 2023, The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional.

Açıklama

Anahtar Kelimeler

Fuzzy Adams–Bashforth Method, Fuzzy Adams–Moulton Method, Generalized Hukuhara Difference, Local Truncation Error

Kaynak

computational and applied mathematics

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

42

Sayı

1

Künye

Safikhani, L., Vahidi, A., Allahviranloo, T., & Afshar Kermani, M. (2023). Multi-step gH-difference-based methods for fuzzy differential equations. Computational and Applied Mathematics, 42(1), 1-30.