Generalized Hukuhara conformable fractional derivative and its application to fuzzy fractional partial differential equations
dc.authorid | Tofigh Allahviranloo / 0000-0002-6673-3560 | en_US |
dc.authorscopusid | Tofigh Allahviranloo / 8834494700 | |
dc.authorwosid | Tofigh Allahviranloo / V-4843-2019 | en_US |
dc.contributor.author | Ghaffari, Manizheh | |
dc.contributor.author | Allahviranloo, Tofigh | |
dc.contributor.author | Abbasbandy, Saeid | |
dc.contributor.author | Azhini, Mahdi | |
dc.date.accessioned | 2022-02-08T06:58:52Z | |
dc.date.available | 2022-02-08T06:58:52Z | |
dc.date.issued | 2022 | en_US |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | The main focus of this paper is to develop an efficient analytical method to obtain the traveling wave fuzzy solution for the fuzzy generalized Hukuhara conformable fractional equations by considering the type of generalized Hukuhara conformable fractional differentiability of the solution. To achieve this, the fuzzy conformable fractional derivative based on the generalized Hukuhara differentiability is defined, and several properties are brought on the topic, such as switching points and the fuzzy chain rule. After that, a new analytical method is applied to find the exact solutions for two famous mathematical equations: the fuzzy fractional wave equation and the fuzzy fractional diffusion equation. The present work is the first report in which the fuzzy traveling wave method is used to design an analytical method to solve these fuzzy problems. The final examples are asserted that our new method is applicable and efficient. | en_US |
dc.identifier.citation | Ghaffari, M., Allahviranloo, T., Abbasbandy, S. et al. Generalized Hukuhara conformable fractional derivative and its application to fuzzy fractional partial differential equations. Soft Comput (2022). | en_US |
dc.identifier.doi | 10.1007/s00500-021-06637-w | en_US |
dc.identifier.issn | 1432-7643 | en_US |
dc.identifier.issn | 1433-7479 | en_US |
dc.identifier.scopus | 2-s2.0-85123934555 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00500-021-06637-w | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/2481 | |
dc.identifier.wos | WOS:000749063000004 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Allahviranloo, Tofigh | |
dc.language.iso | en | en_US |
dc.publisher | SPRINGER | en_US |
dc.relation.ispartof | SOFT COMPUTING | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Generalized Hukuhara Conformable Fractional Derivative | en_US |
dc.subject | Fuzzy Traveling Wave Solution | en_US |
dc.subject | Generalized Partial Hukuhara Differentiability | en_US |
dc.subject | The Fuzzy Fractional Wave Equation | en_US |
dc.subject | The Fuzzy Fractional Diffusion Equation | en_US |
dc.title | Generalized Hukuhara conformable fractional derivative and its application to fuzzy fractional partial differential equations | en_US |
dc.type | Article | en_US |