Yazar "Zarepour, Atefeh" seçeneğine göre listele
Listeleniyor 1 - 20 / 35
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Advancements and applications of upconversion nanoparticles in wound dressings(Royal Soc Chemistry, 2024) Gultekin, Hazal Ezgi; Yasayan, Gokcen; Bal-Ozurk, Ayca; Bigham, Ashkan; Simchi, Abdolreza (Arash); Zarepour, Atefeh; Iravani, SiavashWound healing is a complex process that requires effective management to prevent infections and promote efficient tissue regeneration. In recent years, upconversion nanoparticles (UCNPs) have emerged as promising materials for wound dressing applications due to their unique optical properties and potential therapeutic functionalities. These nanoparticles possess enhanced antibacterial properties when functionalized with antibacterial agents, helping to prevent infections, a common complication in wound healing. They can serve as carriers for controlled drug delivery, enabling targeted release of therapeutic agents to the wound site, allowing for tailored treatment and optimal healing conditions. These nanoparticles possess the ability to convert near-infrared (NIR) light into the visible and/or ultraviolet (UV) regions, making them suitable for therapeutic (photothermal therapy and photodynamic therapy) and diagnostic applications. In the context of wound healing, these nanoparticles can be combined with other materials such as hydrogels, fibers, metal-organic frameworks (MOFs), graphene oxide, etc., to enhance the healing process and prevent the growth of microbial infections. Notably, UCNPs can act as sensors for real-time monitoring of the wound healing progress, providing valuable feedback to healthcare professionals. Despite their potential, the use of UCNPs in wound dressing applications faces several challenges. Ensuring the stability and biocompatibility of UCNPs under physiological conditions is crucial for their effective integration into dressings. Comprehensive safety and efficacy evaluations are necessary to understand potential risks and optimize UCNP-based dressings. Scalability and cost-effectiveness of UCNP synthesis and manufacturing processes are important considerations for practical applications. In addition, efficient incorporation of UCNPs into dressings, achieving uniform distribution, poses an important challenge that needs to be addressed. Future research should prioritize addressing concerns regarding stability and biocompatibility, efficient integration into dressings, rigorous safety evaluation, scalability, and cost-effectiveness. The purpose of this review is to critically evaluate the advantages, challenges, and key properties of UCNPs in wound dressing applications to provide insights into their potential as innovative solutions for enhancing wound healing outcomes. We have provided a detailed description of various types of smart wound dressings, focusing on the synthesis and biomedical applications of UCNPs, specifically their utilization in different types of wound dressings. In this review, we aim to showcase the potential and benefits of up-conversion nanoparticles (UCNPs) in advanced wound care applications.Öğe Antimicrobial activity of blow spun PLA/gelatin nanofibers containing green synthesized silver nanoparticles against wound ınfection-causing bacteria(MDPI, 2022) Sardareh, Elham Alinezhad; Shahzeidi, Moloud; Ardestani, Mohammad Taha Salmanifard; Mousavi-Khattat, Mohammad; Zarepour, Atefeh; Zarrabi, AliOne of the main challenges in wound healing is the wound infection due to various causes, of which moisture is the most important reason. Owing to this fact, wound dressings that can collect wound moisture in addition to showing antibacterial properties have provided an important basis for wound healing research. In this study, gelatin and poly lactic acid (PLA) polymers were used in a wound dressing textile to provide gelation and structure strength properties, respectively. Meanwhile, silver nanoparticles (SNPs) synthesized through the green method were integrated into these fibers to provide the formed textile with antibacterial properties. Nanoparticles were made using donkey dung extract, and nanofibers were produced by the solution blow spinning method which has high production efficiency and low energy consumption among spinning methods. The produced nanoparticles were characterized and evaluated by UV-Vis, DLS, XRD, and FTIR methods, and the production of silver nanoparticles that were coated with metabolites in the extract was proven. In addition, the morphology and diameter of the resulted fibers and presence of nanoparticles were confirmed by the SEM method. The size and size distribution of the synthesized fibers were determined through analyzing SEM results. Gelatin nanofibers demonstrated a mean size of 743 nm before and 773 nm after nanoparticle coating. PLA nanofibers demonstrated a mean size of 57 nm before and 182 nm after nanoparticle coating. Finally, 335 nm was the mean diameter size of gelatin/PLA/SNPs nanofibers. Also, the textiles synthesized by PLA and gelatin which contained silver nanoparticles showed higher antibacterial activity against both gram-positive and gram-negative species compared to PLA and gelatin tissues without nanoparticles. Cytotoxicity test on L929 cells showed that silver nanoparticles incorporated textiles of PLA and gelatin show a very low level and non-significant toxicity compared to the free particles.Öğe Application of 3D, 4D, 5D, and 6D bioprinting in cancer research: what does the future look like?(Royal Soc Chemistry, 2024) Khorsandi, Danial; Rezayat, Dorsa; Sezen, Serap; Ferrao, Rafaela; Khosravi, Arezoo; Zarepour, Atefeh; Khorsandi, MelikaThe application of three- and four-dimensional (3D/4D) printing in cancer research represents a significant advancement in understanding and addressing the complexities of cancer biology. 3D/4D materials provide more physiologically relevant environments compared to traditional two-dimensional models, allowing for a more accurate representation of the tumor microenvironment that enables researchers to study tumor progression, drug responses, and interactions with surrounding tissues under conditions similar to in vivo conditions. The dynamic nature of 4D materials introduces the element of time, allowing for the observation of temporal changes in cancer behavior and response to therapeutic interventions. The use of 3D/4D printing in cancer research holds great promise for advancing our understanding of the disease and improving the translation of preclinical findings to clinical applications. Accordingly, this review aims to briefly discuss 3D and 4D printing and their advantages and limitations in the field of cancer. Moreover, new techniques such as 5D/6D printing and artificial intelligence (AI) are also introduced as methods that could be used to overcome the limitations of 3D/4D printing and opened promising ways for the fast and precise diagnosis and treatment of cancer. Recent advancements pertaining to the application of 3D, 4D, 5D, and 6D bioprinting in cancer research are discussed, focusing on important challenges and future perspectives.Öğe Application of Convergent Science and Technology toward Ocular Disease Treatment(Mdpi, 2023) Bal-Ozturk, Ayca; Ozcan-Bulbul, Ece; Gultekin, Hazal Ezgi; Cecen, Berivan; Demir, Ebru; Zarepour, Atefeh; Cetinel, SibelEyes are one of the main critical organs of the body that provide our brain with the most information about the surrounding environment. Disturbance in the activity of this informational organ, resulting from different ocular diseases, could affect the quality of life, so finding appropriate methods for treating ocular disease has attracted lots of attention. This is especially due to the ineffectiveness of the conventional therapeutic method to deliver drugs into the interior parts of the eye, and the also presence of barriers such as tear film, blood-ocular, and blood-retina barriers. Recently, some novel techniques, such as different types of contact lenses, micro and nanoneedles and in situ gels, have been introduced which can overcome the previously mentioned barriers. These novel techniques could enhance the bioavailability of therapeutic components inside the eyes, deliver them to the posterior side of the eyes, release them in a controlled manner, and reduce the side effects of previous methods (such as eye drops). Accordingly, this review paper aims to summarize some of the evidence on the effectiveness of these new techniques for treating ocular disease, their preclinical and clinical progression, current limitations, and future perspectives.Öğe Association of clinical features with spike glycoprotein mutations in Iranian COVID-19 patients(MDPI, 2022) Ahangarzadeh, Shahrzad; Yousefi, Alireza; Ranjbar, Mohammad Mehdi; Dabiri, Arezou; Zarepour, Atefeh; Sadeghi, Mahmoud; Heidari, Elham; Mazrui, Fariba; Hosseinzadeh, Majid; Ataei, Behrooz; Zarrabi, Ali; Shariati, Laleh; Javanmard, Shaghayegh HaghjooyBackground: Mutations in spike glycoprotein, a critical protein of SARS-CoV-2, could directly impact pathogenicity and virulence. The D614G mutation, a non-synonymous mutation at position 614 of the spike glycoprotein, is a predominant variant circulating worldwide. This study investigated the occurrence of mutations in the crucial zone of the spike gene and the association of clinical symptoms with spike mutations in isolated viruses from Iranian patients infected with SARS-CoV-2 during the second and third waves of the COVID-19 epidemic in Isfahan, the third-largest city in Iran. Methods: The extracted RNA from 60 nasopharyngeal samples of COVID-19 patients were subjected to cDNA synthesis and RT-PCR (in three overlapping fragments). Each patient's reverse transcriptase polymerase chain reaction (RT-PCR) products were assembled and sequenced. Information and clinical features of all sixty patients were collected, summarized, and analyzed using the GENMOD procedure of SAS 9.4. Results: Analysis of 60 assembled sequences identified nine nonsynonymous mutations. The D614G mutation has the highest frequency among the amino acid changes. In our study, in 31 patients (51.66%), D614G mutation was determined. For all the studied symptoms, no significant relationship was observed with the incidence of D614G mutation. Conclusions: D614G, a common mutation among several of the variants of SARS-CoV-2, had the highest frequency among the studied sequences and its frequency increased significantly in the samples of the third wave compared to the samples of the second wave of the disease.Öğe Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications(Mdpi, 2023) Pirmoradi, Leila; Shojaei, Shahla; Ghavami, Saeid; Zarepour, Atefeh; Zarrabi, AliMacroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.Öğe Biomedical applications of engineered heparin-based materials(Keai Publishing Ltd, 2024) Zare, Ehsan Nazarzadeh; Khorsandi, Danial; Zarepour, Atefeh; Yilmaz, Hulya; Agarwal, Tarun; Hooshmand, Sara; Mohammadinejad, RezaHeparin is a negatively charged polysaccharide with various chain lengths and a hydrophilic backbone. Due to its fascinating chemical and physical properties, nontoxicity, biocompatibility, and biodegradability, heparin has been extensively used in different fields of medicine, such as cardiovascular and hematology. This review highlights recent and future advancements in designing materials based on heparin for various biomedical ap-plications. The physicochemical and mechanical properties, biocompatibility, toxicity, and biodegradability of heparin are discussed. In addition, the applications of heparin-based materials in various biomedical fields, such as drug/gene delivery, tissue engineering, cancer therapy, and biosensors, are reviewed. Finally, challenges, opportunities, and future perspectives in preparing heparin-based materials are summarized.Öğe Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation(Elsevier Advanced Technology, 2023) Cecen, Berivan; Saygili, Ecem; Zare, Iman; Nejati, Omid; Khorsandi, Danial; Zarepour, Atefeh; Alarcin, EmineBecause of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS). Defining the system's qualifying parameters may improve the BoC for the next generation of in vitro platforms. These parameters show how well a given platform solves the problems unique to in vitro CNS modeling (like recreating the brain's microenvironment and including essential parts like the blood-brain barrier (BBB)) and how much more value it offers than traditional cell culture systems. This review provides an overview of the practical concerns of creating and deploying BoC systems and elaborates on how these technologies might be used. Not only how advanced biosensing technologies could be integrated with BoC system but also how novel approaches will automate assays and improve point-of-care (PoC) diagnostics and accurate quantitative analyses are discussed. Key challenges providing opportunities for clinical translation of BoC in neurodegenerative disorders are also addressed.Öğe Cellular targets and molecular activity mechanisms of bee venom in cancer: recent trends and developments(2022) Varol, Ayşegül; Sezen, Serap; Evcimen, Dilhan; Zarepour, Atefeh; Ulus, Gönül; Zarrabi, Ali; Badr, Gamal; Dastan, Sevgi Durna; Orbayoglu, Asya GulistanBee venom therapy is known as a traditional approach to curing many medical conditions such as arthritis, pain and rheumatism. Bee venom also provides promising potential for treating many cancers such as breast, lung, ovary, stomach, kidney, prostate, cervical, colon and esophageal cancers, osteosarcoma, leukemia, melanoma and hepatocellular carcinoma. We therefore focused not only on the molecular activity mechanisms and cellular targets of bee venom and its components, but also on modern solutions as cutting-edge nanotechnological advances to overcome existing bottlenecks, and the latest advances in the anticancer application of bee venom in clinical settings.Öğe Combination therapy using nanomaterials and stem cells to treat spinal cord injuries(Elsevier Science, 2022) Zarepour, Arezou; Bal Öztürk, Ayça; Koyuncu Irmak, Duygu; Yaşayan, Gökçen; Gökmen, Aylin; Karaöz, Erdal; Zarepour, Atefeh; Zarrabi, Ali; Mostafavi, EbrahimAs a part of the central nervous system, the spinal cord (SC) provides most of the communications between the brain and other parts of the body. Any damage to SC interrupts this communication, leading to serious problems, which may remain for the rest of their life. Due to its significant impact on patients’ quality of life and its exorbitant medical costs, SC injury (SCI) is known as one of the most challengeable diseases in the world. Thus, it is critical to introduce highly translatable therapeutic platforms for SCI treatment. So far, different strategies have been introduced, among which utilizing various types of stem cells is one of the most interesting ones. The capability of stem cells to differentiate into several types of cell lines makes them promising candidates for the regeneration of injured tissues. One of the other interesting and novel strategies for SCI treatment is the appli- cation of nanomaterials, which could appear as a carrier for therapeutic agents or as a platform for culturing the cells. Combining these two approaches, stem cells and nanomaterials, could provide promising therapeutic strategies for SCI management. Accordingly, in this review we have summarized some of the recent advance- ments in which the applications of different types of stem cells and nanomaterials, alone and in combination forms, were evaluated for SCI treatment.Öğe A comparison study between doxorubicin and curcumin co-administration and co-loading in a smart niosomal formulation for MCF-7 breast cancer therapy(Elsevier, 2023) Saharkhiz, Shaghayegh; Zarepour, Atefeh; Nasri, Negar; Cordani, Marco; Zarrabi, AliChemotherapy agents often exhibit limited effectiveness due to their fast elimination from the body and nontargeted delivery. Emerging nanomaterials as drug delivery carriers open new expectancy to overcome these limitations in current chemotherapeutic treatments. In this study, we introduce and evaluate a smart pHresponsive niosomal formulation capable of delivering Doxorubicin (DOX) and Curcumin (CUR) in both individually and co-loaded forms. In particular, drug-loaded niosomes were prepared using thin-film hydration method and then characterized via different physicochemical analyses. The pH responsivity of the carrier was assessed by performing a drug release study in three different pH conditions (4, 6.5, and 7.4). Finally, the anticancer efficacy of the therapeutic compounds was evaluated through the MTT assay. Our results showed spherical particles with a size of about 200 nm and -2 mV surface charge. Encapsulation efficiency (EE%) of the nanocarrier was about 77.06 % and 79.08 % for DOX and CUR, respectively. The release study confirmed the pH responsivity of the carrier. The MTT assay results revealed about 39 % and 43 % of cell deaths after treatment with cur-loaded and dox-loaded niosomes, which increased to 74 % and 79 % after co-administration and coloading forms of drugs, respectively, exhibiting increased anticancer efficacy by selectively delivering DOX and CUR individually or in combination. Overall, these findings suggest that our nanoformulation holds the potential as a targeted and highly effective approach for cancer management and therapy, overcoming the limitations of conventional chemotherapy drugs.Öğe Crosstalk of Transcriptional Regulators of Adaptive Immune System and microRNAs: An Insight into Differentiation and Development(Mdpi, 2023) Boshtam, Maryam; Rahimmanesh, Ilnaz; Shariati, Laleh; Najaflu, Malihe; Khanahmad, Hossein; Mirian, Mina; Zarepour, AtefehMicroRNAs (miRNAs), as small regulatory RNA molecules, are involved in gene expression at the post-transcriptional level. Hence, miRNAs contribute to gene regulation of various steps of different cell subsets' differentiation, maturation, and activation. The adaptive immune system arm, which exhibits the most specific immune responses, is also modulated by miRNAs. The generation and maturation of various T-cell subsets concomitant with B-cells is under precise regulation of miRNAs which function directly on the hallmark genes of each cell subset or indirectly through regulation of signaling pathway mediators and/or transcription factors involved in this maturation journey. In this review, we first discussed the origination process of common lymphocyte progenitors from hematopoietic stem cells, which further differentiate into various T-cell subsets under strict regulation of miRNAs and transcription factors. Subsequently, the differentiation of B-cells from common lymphocyte progenitors in bone marrow and periphery were discussed in association with a network of miRNAs and transcription factors.Öğe Development of pH and thermo-responsive smart niosomal carriers for delivery of gemcitabine to the breast cancer cells(Springernature, 2024) Ghalehshahi, Saeid Shirzadi; Saharkhiz, Shaghayegh; Naderi, Nazanin; Nasri, Negar; Saharkhiz, Shiva; Zarepour, Atefeh; Goodarzi, RezaThe utilization of intelligent drug carriers in cancer therapy has emerged as a transformative paradigm in modern oncology. These advanced drug delivery systems exploit the distinctive characteristics of cancer cells and their surrounding microenvironment to attain precise and targeted drug release at the tumor site. In this study, we aim to introduce a novel niosome formulation endowed with dual-responsive properties, pH, and thermo-sensitivity, to enhance drug release precisely within the intended target site. Therefore, thin-film method was used for the fabrication of niosomes, incorporating dipalmitoylphosphatidylcholine (DPPC), as thermoresponsive phospholipid, and citraconic anhydride, as pH-responsive linker. The fabricated niosomes were evaluated through physicochemical analysis using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and scanning electron microscopy (SEM). Additionally, the entrapment efficiency (EE%) and drug release pattern of gemcitabine (GEM) were quantified at different conditions using UV-Visible spectroscopy. The bioactivity of these niosomes was also evaluated via cytotoxicity assay and flow cytometry. Results of physicochemical analysis verified the successful fabrication of spherical nanoparticles, with a size range of about 100-150 nm and a neutral surface charge. Furthermore, the fabricated niosomes showed sensitivity to acidic pH (6.5) and temperature exceeding the transition temperature (Tc) of the DPPC (41.5 degrees C). Importantly, the drug release profile indicated about 10-17% enhancement in drug release for the dual-stimuli platform in comparison to the single-stimuli ones. The cytotoxicity assay and flow cytometry analysis demonstrated an approximate 10% increase in cytotoxicity and about a 2.5-fold rise in apoptosis induction for the dual-stimuli responsive platform in contrast to the free drug. In conclusion, this dual-stimuli responsive nanocarrier presents a promising strategy to enhance the specificity and efficacy of cancer chemotherapy while simultaneously reducing the adverse side effects experienced by patients.Öğe Empowering Cancer Therapy: Comparing PEGylated and Non-PEGylated Niosomes Loaded with Curcumin and Doxorubicin on MCF-7 Cell Line(Mdpi, 2023) Saharkhiz, Shaghayegh; Zarepour, Atefeh; Zarrabi, AliCancer remains an enduring challenge in modern society, prompting relentless pursuits to confront its complexities. However, resistance often emerges against conventional treatments, driven by their inherent limitations such as adverse effects and limited solubility. Herein, we spotlight a remarkable solution; a niosomal platform engineered to tandemly ferry two potent agents, doxorubicin (DOX) and curcumin (CUR). Notably, we delve into the pivotal role of PEGylation, unraveling its impact on therapeutic efficacy. These niosomes consist of Span 60, Tween 60, and cholesterol with a molar ratio of 5:2:3, which were prepared via a thin film hydration method. The physicochemical characterization of particles was performed using DLS, zeta potential measurement, SEM, and FTIR analysis. In addition, their encapsulation efficiency and release profile were determined using the HPLC method. Finally, their cytotoxicity and biocompatibility effects were checked by performing an MTT assay test on the MCF7 and L929 cell lines. The obtained results confirmed the successful fabrication of co-loaded niosomal structures with and without PEG coating. The fabricated nanoparticles had sizes in the range of 100 to 200 nm with a surface charge of about -18 mV for particles without PEG coating and -40 mV for coated particles. Notably, DOX encapsulation efficiency leaps from 20% to 62% in the transition from uncoated to coated, while CUR exhibits an impressive surge from 80% to 95%. The drug release was more controlled and slower in the coated sample. Finally, the MTT results confirmed the biocompatibility and synergistic effect of the simultaneous use of two drugs on cancer cells in the PEGylated niosomal particle. Based on the results, PEGylated niosomal particles can be considered adept vehicles for the simultaneous delivery of different chemotherapy cargoes with synergic interaction to overcome cancer.Öğe Fabrication of a dual-drug-loaded smart niosome-g-chitosan polymeric platform for lung cancer treatment(MDPI, 2023) Zarepour, Atefeh; Eğil, Abdurrahim Can; Cokol Çakmak, Melike; Esmaeili Rad, Monireh; Çetin, Yüksel; Aydınlık, Şeyma; Zarrabi, AliChanges in weather conditions and lifestyle lead to an annual increase in the amount of lung cancer, and therefore it is one of the three most common types of cancer, making it important to find an appropriate treatment method. This research aims to introduce a new smart nano-drug delivery system with antibacterial and anticancer capabilities that could be applied for the treatment of lung cancer. It is composed of a niosomal carrier containing curcumin as an anticancer drug and is coated with a chitosan polymeric shell, alongside Rose Bengal (RB) as a photosensitizer with an antibacterial feature. The characterization results confirmed the successful fabrication of lipid-polymeric carriers with a size of nearly 80 nm and encapsulation efficiency of about 97% and 98% for curcumin and RB, respectively. It had the Korsmeyer-Peppas release pattern model with pH and temperature responsivity so that nearly 60% and 35% of RB and curcumin were released at 37 degrees C and pH 5.5. Moreover, it showed nearly 50% toxicity against lung cancer cells over 72 h and antibacterial activity against Escherichia coli. Accordingly, this nanoformulation could be considered a candidate for the treatment of lung cancer; however, in vivo studies are needed for better confirmation.Öğe Gold nanorods for drug and gene delivery: an overview of recent advancements(2022) Jahangiri-Manesh, Atieh; Mousazadeh, Marziyeh; Taji, Shirinsadat; Bahmani, Abbas; Zarepour, Atefeh; Zarrabi, Ali; Sharifi, Esmaeel; Azimzadeh, MostafaOver the past few decades, gold nanomaterials have shown great promise in the field of nanotechnology, especially in medical and biological applications. They have become the most used nanomaterials in those fields due to their several advantageous. However, rod-shaped gold nanoparticles, or gold nanorods (GNRs), have some more unique physical, optical, and chemical properties, making them proper candidates for biomedical applications including drug/gene delivery, photothermal/photodynamic therapy, and theranostics. Most of their therapeutic applications are based on their ability for tunable heat generation upon exposure to near-infrared (NIR) radiation, which is helpful in both NIR-responsive cargo delivery and photothermal/photodynamic therapies. In this review, a comprehensive insight into the properties, synthesis methods and toxicity of gold nanorods are overviewed first. For the main body of the review, the therapeutic applications of GNRs are provided in four main sections: (i) drug delivery, (ii) gene delivery, (iii) photothermal/photodynamic therapy, and (iv) theranostics applications. Finally, the challenges and future perspectives of their therapeutic application are discussed.Öğe Graphene- and MXene-based materials for neuroscience: diagnostic and therapeutic applications(Royal Soc Chemistry, 2023) Zarepour, Atefeh; Karasu, Cimen; Mir, Yousof; Nematollahi, Mohammad Hadi; Iravani, Siavash; Zarrabi, AliMXenes and graphene are two-dimensional materials that have gained increasing attention in neuroscience, particularly in sensing, theranostics, and biomedical engineering. Various composites of graphene and MXenes with fascinating thermal, optical, magnetic, mechanical, and electrical properties have been introduced to develop advanced nanosystems for diagnostic and therapeutic applications, as exemplified in the case of biosensors for neurotransmitter detection. These biosensors display high sensitivity, selectivity, and stability, making them promising tools for neuroscience research. MXenes have been employed to create high-resolution neural interfaces for neuroelectronic devices, develop neuro-receptor-mediated synapse devices, and stimulate the electrophysiological maturation of neural circuits. On the other hand, graphene/derivatives exhibit therapeutic applicability in neuroscience, as exemplified in the case of graphene oxide for targeted delivery of therapeutic agents to the brain. While MXenes and graphene have potential benefits in neuroscience, there are also challenges/limitations associated with their use, such as toxicity, environmental impacts, and limited understanding of their properties. In addition, large-scale production and commercialization as well as optimization of reaction/synthesis conditions and clinical translation studies are very important aspects. Thus, it is important to consider the use of these materials in neuroscience research and conduct further research to obtain an in-depth understanding of their properties and potential applications. By addressing issues related to biocompatibility, long-term stability, targeted delivery, electrical interfaces, scalability, and cost-effectiveness, MXenes and graphene have the potential to greatly advance the field of neuroscience and pave the way for innovative diagnostic and therapeutic approaches for neurological disorders. Herein, recent advances in therapeutic and diagnostic applications of graphene- and MXene-based materials in neuroscience are discussed, focusing on important challenges and future prospects. Therapeutic and diagnostic applications of graphene- and MXene-based materials in neuroscience are deliberated, focusing on important challenges and future prospects.Öğe Immunology meets bioengineering: Improving the effectiveness of glioblastoma immunotherapy(MDPI, 2022) Fekrirad, Zahra; Behrooz, Amir Barzegar; Ghaem, Shokoofeh; Khosrojerdi, Arezou; Zarepour, Atefeh; Zarrabi, Ali; Arefian, Ehsan; Ghavami, SaeidGlioblastoma (GBM) therapy has seen little change over the past two decades. Surgical excision followed by radiation and chemotherapy is the current gold standard treatment. Immunotherapy techniques have recently transformed many cancer treatments, and GBM is now at the forefront of immunotherapy research. GBM immunotherapy prospects are reviewed here, with an emphasis on immune checkpoint inhibitors and oncolytic viruses. Various forms of nanomaterials to enhance immunotherapy effectiveness are also discussed. For GBM treatment and immunotherapy, we outline the specific properties of nanomaterials. In addition, we provide a short overview of several 3D (bio)printing techniques and their applications in stimulating the GBM microenvironment. Lastly, the susceptibility of GBM cancer cells to the various immunotherapy methods will be addressed.Öğe Injectable, antibacterial, and oxygen-releasing chitosan-based hydrogel for multimodal healing of bacteria-infected wounds(Royal Soc Chemistry, 2023) Bochani, Shayesteh; Zarepour, Atefeh; Kalantari-Hesari, Ali; Haghi, Fakhri; Shahbazi, Mohammad-Ali; Zarrabi, Ali; Taheri, SophiaBacterial infection is one of the main challenges of wound healing. It imposes financial and healthcare costs. The emergence of antibiotic-resistant bacteria has increased concerns about this challenge, and made finding alternative solutions a crucial aim. We created a new, antibacterial, multifunctional hydrogel with synergistic chemodynamic and photothermal features for wound-healing applications. We fabricated a chitosan (CT)-based hydrogel containing tannic acid (TA), Fe, and MnO2 nanosheets (CT-TA-Fe-MnO2) via a simple method and characterized it. The antibacterial features (resulting from the production of reactive oxygen species within bacterial cells) and healing ability (via anti-inflammatory and hemostatic features) of the hydrogel were confirmed in vitro. In vivo results revealed the effectiveness of the CT-TA-Fe-MnO2 hydrogel in decreasing the hemostatic time, improving anti-inflammatory effects, and promoting wound healing during 14 days by enhancing the deposition and maturation of collagen fibers without affecting the vital organs. The fabricated CT-TA-Fe-MnO2 hydrogel could be a promising candidate with antibacterial and anti-inflammatory activities suitable for wound-healing applications.Öğe Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies(Royal Soc Chemistry, 2024) Zarepour, Atefeh; Khosravi, Arezoo; Yuecel Ayten, Necla; cakir Hatir, Pinar; Iravani, Siavash; Zarrabi, AliGraphene quantum dots (GQDs) hold great promise for photodynamic and photothermal cancer therapies. Their unique properties, such as exceptional photoluminescence, photothermal conversion efficiency, and surface functionalization capabilities, make them attractive candidates for targeted cancer treatment. GQDs have a high photothermal conversion efficiency, meaning they can efficiently convert light energy into heat, leading to localized hyperthermia in tumors. By targeting the tumor site with laser irradiation, GQD-based nanosystems can induce selective cancer cell destruction while sparing healthy tissues. In photodynamic therapy, light-sensitive compounds known as photosensitizers are activated by light of specific wavelengths, generating reactive oxygen species that induce cancer cell death. GQD-based nanosystems can act as excellent photosensitizers due to their ability to absorb light across a broad spectrum; their nanoscale size allows for deeper tissue penetration, enhancing the therapeutic effect. The combination of photothermal and photodynamic therapies using GQDs holds immense potential in cancer treatment. By integrating GQDs into this combination therapy approach, researchers aim to achieve enhanced therapeutic efficacy through synergistic effects. However, biodistribution and biodegradation of GQDs within the body present a significant hurdle to overcome, as ensuring their effective delivery to the tumor site and stability during treatment is crucial for therapeutic efficacy. In addition, achieving precise targeting specificity of GQDs to cancer cells is a challenging task that requires further exploration. Moreover, improving the photothermal conversion efficiency of GQDs, controlling reactive oxygen species generation for photodynamic therapy, and evaluating their long-term biocompatibility are all areas that demand attention. Scalability and cost-effectiveness of GQD synthesis methods, as well as obtaining regulatory approval for clinical applications, are also hurdles that need to be addressed. Further exploration of GQDs in photothermal and photodynamic cancer therapies holds promise for advancements in targeted drug delivery, personalized medicine approaches, and the development of innovative combination therapies. The purpose of this review is to critically examine the current trends and advancements in the application of GQDs in photothermal and photodynamic cancer therapies, highlighting their potential benefits, advantages, and future perspectives as well as addressing the crucial challenges that need to be overcome for their practical application in targeted cancer therapy. Recent advancements pertaining to the application of GQD-based nanosystems in photothermal and photodynamic cancer therapies are discussed, highlighting crucial challenges, advantages, and future perspectives.