Application of 3D, 4D, 5D, and 6D bioprinting in cancer research: what does the future look like?
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Royal Soc Chemistry
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The application of three- and four-dimensional (3D/4D) printing in cancer research represents a significant advancement in understanding and addressing the complexities of cancer biology. 3D/4D materials provide more physiologically relevant environments compared to traditional two-dimensional models, allowing for a more accurate representation of the tumor microenvironment that enables researchers to study tumor progression, drug responses, and interactions with surrounding tissues under conditions similar to in vivo conditions. The dynamic nature of 4D materials introduces the element of time, allowing for the observation of temporal changes in cancer behavior and response to therapeutic interventions. The use of 3D/4D printing in cancer research holds great promise for advancing our understanding of the disease and improving the translation of preclinical findings to clinical applications. Accordingly, this review aims to briefly discuss 3D and 4D printing and their advantages and limitations in the field of cancer. Moreover, new techniques such as 5D/6D printing and artificial intelligence (AI) are also introduced as methods that could be used to overcome the limitations of 3D/4D printing and opened promising ways for the fast and precise diagnosis and treatment of cancer. Recent advancements pertaining to the application of 3D, 4D, 5D, and 6D bioprinting in cancer research are discussed, focusing on important challenges and future perspectives.
Açıklama
Anahtar Kelimeler
Artificial-Intelligence, Nanocomposite Hydrogel, Drug-Delivery, In-Vitro, Tissue, Fabrication, Resistance, Scaffolds, Alginate, Implant
Kaynak
Journal of Materials Chemistry B
WoS Q Değeri
N/A
Scopus Q Değeri
Q1