An analytical study of Pythagorean fuzzy fractional wave equation using multivariate Pythagorean fuzzy fourier transform under generalized Hukuhara Caputo fractional differentiability
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springernature
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Pythagorean fuzzy fractional calculus provides a strong framework for modeling and analyzing complicated systems with uncertainty and indeterminacy. The primary focus of this article is to investigate the analytical solution of the Pythagorean fuzzy fractional wave equation using multivariate Pythagorean fuzzy Fourier transform under generalized Hukuhara Caputo fractional differentiability. To this end, we first establish generalized Hukuhara Caputo fractional differentiability in the context of multivariate Pythagorean fuzzy-valued functions and then we present some results of multivariate Pythagorean generalized Hukuhara Caputo fractional differentiability and generalized Hukuhara integrability. We present the concept of multivariate Pythagorean fuzzy Fourier transform and give some results for Pythagorean fuzzy Fourier transforms of second-order generalized Hukuhara partial differentiability. Finally, we provide a practical application of the Pythagorean fuzzy fractional wave equation to visco-elastic materials including polymers and biological tissues. Their graphs are analyzed to visualize and support the theoretical findings.
Açıklama
Anahtar Kelimeler
Generalized Hukuhara Differentiability, Generalized Hukuhara Caputo Fractional Differentiability, Multivariate Pythagorean Fuzzy Function, Wave Equation, Fourier Transform
Kaynak
Granular Computing
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
9
Sayı
1