Center transfer for supervised domain adaptation
dc.authorid | Witold Pedrycz / 0000-0002-9335-9930 | en_US |
dc.authorscopusid | Witold Pedrycz / 56854903200 | en_US |
dc.authorwosid | Witold Pedrycz / FPE-7309-2022 | en_US |
dc.contributor.author | Huang, Xiuyu | |
dc.contributor.author | Zhou, Nan | |
dc.contributor.author | Huang, Jian | |
dc.contributor.author | Zhang, Huaidong | |
dc.contributor.author | Pedrycz, Witold | |
dc.contributor.author | Choi, Kup-Sze | |
dc.date.accessioned | 2023-08-31T10:45:23Z | |
dc.date.available | 2023-08-31T10:45:23Z | |
dc.date.issued | 2023 | en_US |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description.abstract | Domain adaptation (DA) is a popular strategy for pattern recognition and classification tasks. It leverages a large amount of data from the source domain to help train the model applied in the target domain. Supervised domain adaptation (SDA) approaches are desirable when only few labeled samples from the target domain are available. They can be easily adopted in many real-world applications where data collection is expensive. In this study, we propose a new supervision signal, namely center transfer loss (CTL), to efficiently align features under the SDA setting in the deep learning (DL) field. Unlike most previous SDA methods that rely on pairing up training samples, the proposed loss is trainable only using one-stream input based on the mini-batch strategy. The CTL exhibits two main functionalities in training to increase the performance of DL models, i.e., domain alignment and increasing the feature's discriminative power. The hyper-parameter to balance these two functionalities is waived in CTL, which is the second improvement from the previous approaches. Extensive experiments completed on well-known public datasets show that the proposed method performs better than recent state-of-the-art approaches. | en_US |
dc.identifier.citation | Huang, X., Zhou, N., Huang, J., Zhang, H., Pedrycz, W., & Choi, K. S. (2023). Center transfer for supervised domain adaptation. Applied Intelligence, 1-17. | en_US |
dc.identifier.doi | 10.1007/s10489-022-04414-2 | en_US |
dc.identifier.issn | 0924-669X | en_US |
dc.identifier.issn | 1573-7497 | en_US |
dc.identifier.pmid | 36718382 | en_US |
dc.identifier.scopus | 2-s2.0-85146871386 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s10489-022-04414-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/3958 | |
dc.identifier.wos | WOS:000918506600001 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.institutionauthor | Pedrycz, Witold | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Applied Intelligence | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Supervised Domain Adaptation | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Center Transfer Loss | en_US |
dc.subject | Transfer Learning | en_US |
dc.title | Center transfer for supervised domain adaptation | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- Ä°sim:
- Huang-2023-Center-transfer-for-supervised-doma.pdf
- Boyut:
- 2.95 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- Ä°sim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: