4D printing of self-healing and shape-memory hydrogels sensitive to body temperature

dc.authorscopusidTurdimuhammad Abdullah / 57787137200
dc.authorwosidTurdimuhammad Abdullah / AHD-2291-2022
dc.contributor.authorAydın, Gamze
dc.contributor.authorAbdullah, Turdimuhammad
dc.contributor.authorOkay, Oğuz
dc.date.accessioned2025-04-17T11:30:48Z
dc.date.available2025-04-17T11:30:48Z
dc.date.issued2025
dc.departmentİstinye Üniversitesi, Lisansüstü Eğitim Enstitüsü, Sağlık Bilimleri, Kök Hücre ve Doku Mühendisliği Programı
dc.description.abstractThe development of thermoresponsive shape-memory hydrogels (SMHs) that combine robust mechanical properties, self-healing capabilities, and 4D printing potential holds great promise for advanced biomedical and smart material applications. Such hydrogels with trigger temperatures close to but below 37 degrees C are ideal for biomedical use. Despite their potential, developing SMHs that meet the right trigger temperature along with sufficient mechanical strength remains a significant challenge. We present here a simple strategy to create 4Dprinted mechanically robust, self-healing and shape-memory supramolecular hydrogels with a Young's modulus and tensile strength of 51 f 1 MPa, and 6.0 f 0.3 MPa, respectively. They exhibit a trigger temperature between 32 degrees C and 40 degrees C that can be adjusted by the composition of the hydrogel network. The hydrogels are prepared by terpolymerizing hydrophobic, crystallizable hexadecyl acrylate (C16A), hydrophilic N,N-dimethyl acrylamide (DMAA), and methacrylic acid (MAAc) monomers in the presence of TPO photoinitiator using a commercial stereolithography (SLA) device without any solvent, or cross-linker. Strong hydrogen bonding interactions between DMAA and MAAc units contribute to the mechanical properties of the hydrogels by creating reversible cross-links while the hexadecyl side chains of C16A units further increase the mechanical strength by forming crystalline domains in the hydrogels with a melting temperature between 32 and 40 degrees C. All the hydrogels exhibit complete heat-induced self-healing and shape-memory functions due to their entropic elasticity. The successful 4D printing of shapes like a flower and a paper clip showcases the adaptability of these hydrogels for functional devices such as smart packaging and drug delivery systems.
dc.description.sponsorshipTürkiye Bilimler Akademisi
dc.identifier.citationAydin, G., Abdullah, T., & Okay, O. (2025). 4D printing of self-healing and shape-memory hydrogels sensitive to body temperature. European Polymer Journal, 223, 113651.
dc.identifier.doi10.1016/j.eurpolymj.2024.113651
dc.identifier.endpage12
dc.identifier.issn0014-3057
dc.identifier.issn1873-1945
dc.identifier.scopus2-s2.0-85212324086
dc.identifier.scopusqualityQ1
dc.identifier.startpage1
dc.identifier.urihttp://dx.doi.org/10.1016/j.eurpolymj.2024.113651
dc.identifier.urihttps://hdl.handle.net/20.500.12713/6224
dc.identifier.volume223
dc.identifier.wosWOS:001391407600001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorAbdullah, Turdimuhammad
dc.institutionauthoridTurdimuhammad Abdullah / 0000-0003-3335-4561
dc.language.isoen
dc.publisherElsevier ltd
dc.relation.ispartofEuropean polymer journal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subject4D Printing
dc.subjectAlkyl Crystals
dc.subjectBody Temperature Sensitivity
dc.subjectH-Bonding
dc.subjectMechanical Properties
dc.subjectSelf-Healing
dc.subjectShape-Memory Hydrogels
dc.title4D printing of self-healing and shape-memory hydrogels sensitive to body temperature
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
1-s2.0-S0014305724009121-main.pdf
Boyut:
12.28 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: