Magnetic Resonance Imaging-based biomechanical simulation of cartilage: a systematic review
Yükleniyor...
Dosyalar
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
MRI-based mathematical and computational modeling studies can contribute to a better understanding of the mechanisms governing cartilage’s mechanical performance and cartilage disease. In addition, distinct modeling of cartilage is needed to optimize artificial cartilage production. These studies have opened up the prospect of further deepening our understanding of cartilage function. Furthermore, these studies reveal the initiation of an engineering-level approach to how cartilage disease affects material properties and cartilage function. Aimed at researchers in the field of MRI-based cartilage simulation, research articles pertinent to MRI-based cartilage modeling were identified, reviewed, and summarized systematically. Various MRI applications for cartilage modeling are highlighted, and the limitations of different constitutive models used are addressed. In addition, the clinical application of simulations and studied diseases are discussed. The paper’s quality, based on the developed questionnaire, was assessed, and out of 79 reviewed papers, 34 papers were determined as high-quality. Due to the lack of the best constitutive models for various clinical conditions, researchers may consider the effect of constitutive material models on the cartilage disease simulation. In the future, research groups may incorporate various aspects of machine learning into constitutive models and MRI data extraction to further refine the study methodology. Moreover, researchers should strive for further reproducibility and rigorous model validation and verification, such as gait analysis.
Açıklama
Anahtar Kelimeler
Biomechanics, Cartilage, Clinical Application, Constitutive Model, Magnetic Resonance Imaging (MRI), Osteoarthritis
Kaynak
Journal of the Mechanical Behavior of Biomedical Materials
WoS Q Değeri
Q2
Scopus Q Değeri
N/A
Cilt
126
Sayı
Künye
Seyedpour, S. M., Nafisi, S., Nabati, M., Pierce, D. M., Reichenbach, J. R., & Ricken, T. (2022). Magnetic Resonance Imaging-based biomechanical simulation of cartilage: A systematic review. Journal of the mechanical behavior of biomedical materials, 126, 104963. Advance online publication.