Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support
dc.authorid | Dursun Delen / 0000-0001-8857-5148 | en_US |
dc.authorscopusid | Dursun Delen / 55887961100 | |
dc.authorwosid | Dursun Delen / AGA-9892-2022 | en_US |
dc.contributor.author | Amini, Mostafa | |
dc.contributor.author | Bagheri, Ali | |
dc.contributor.author | Delen, Dursun | |
dc.date.accessioned | 2022-08-08T11:05:23Z | |
dc.date.available | 2022-08-08T11:05:23Z | |
dc.date.issued | 2022 | en_US |
dc.department | İstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.description.abstract | Millions of car crashes occur annually in the US, leaving tens of thousands of deaths and many more severe injuries. Thus, understanding the most impactful contributors to severe injuries in automobile crashes and mitigating their effects are of great importance in traffic safety improvement. This paper develops a hybrid framework involving predictive analytics, explainable AI, and heuristic optimization techniques to investigate and explain the injury severity risk factors in automobile crashes. First, our framework examines various machine learning models to identify the one with the best prediction performance as the base model. Then, it utilizes two popular state-of-the-art explainable AI techniques from the literature (i.e., leave-one-covariate-out and TreeEx-plainer) and our proposed explanation method based on the variable neighborhood search procedure to construe the importance of the variables. Finally, by applying an information fusion technique, our approach identifies a unified ranking list of the most important variables contributing to severe car crash injuries. Transportation safety planners and policymakers can use our findings to reduce the severity of car accidents, improve traffic safety, and save many lives. | en_US |
dc.identifier.citation | Amini, M., Bagheri, A., Delen, D. (2022). Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support. Reliability Engineering & System Safety, 226. | en_US |
dc.identifier.doi | 10.1016/j.ress.2022.108720 | en_US |
dc.identifier.issn | 0951-8320 | en_US |
dc.identifier.scopus | 2-s2.0-85134753162 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.ress.2022.108720 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12713/3071 | |
dc.identifier.volume | 226 | en_US |
dc.identifier.wos | WOS:000832135600003 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Delen, Dursun | |
dc.language.iso | en | en_US |
dc.publisher | ELSEVIER SCI | en_US |
dc.relation.ispartof | RELIABILITY ENGINEERING & SYSTEM SAFETY | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Explainable AI | en_US |
dc.subject | Variable Neighborhood Search | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Information Fusion | en_US |
dc.subject | Injury Severity Risk Factors | en_US |
dc.title | Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- Ä°sim:
- 1-s2.0-S0951832022003441-main.pdf
- Boyut:
- 3.33 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- Ä°sim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: