In silico evaluation of lattice designs for additively manufactured total hip implants

dc.authoridArmin Bijanzad / 0000-0002-1251-3511en_US
dc.authorscopusidArmin Bijanzad / 56997394100
dc.authorwosidArmin Bijanzad / ABC-6306-2021
dc.contributor.authorIzri, Zineddine
dc.contributor.authorBijanzad, Armin
dc.contributor.authorTorabnia, Shams
dc.contributor.authorLazoğlu, İsmail
dc.date.accessioned2022-03-07T13:50:38Z
dc.date.available2022-03-07T13:50:38Z
dc.date.issued2022en_US
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Bölümüen_US
dc.description.abstractAdditive manufacturing restructures the fabrication of custom medical implants and transforms the design, topology optimization, and material selection perspectives in biomechanical applications. Additionally, it facilitated the design and fabrication of patient-oriented hip implants. Selection of proper lattice type is critical in additive manufacturing of hip implants. The lattice types reduce the implant mass and, due to higher stress distribution and deformations as compared to the rigid implants, it brings down the stress shielding issues. This study introduces a rigid shell structure and infill lattice hip implant. Additionally, the effect of various lattice unit cell thickness (0.2-1 mm) and elemental size (2.5-5 mm) while applying 2300 N axial force is explored numerically. A cubic structure with two rigid surfaces on the top and bottom is outlined to separate the effect of the hip implant cross-sectional area variations. The stress distribution and deformation characteristics are validated with the hip implant design. The Finite Element Analysis (FEA) demonstrated that the Weaire-Phelan lattice structure exhibits the least stress and deformation among the other types at various design parameters. Additionally, the same methodology is applied to three biocompatible hip implant materials as Ti-6Al-4V, TA15 (Ti-6Al-2Zr-1Mo-1V), and CoCr28Mo6. Finally, the effect of the unit cell thickness and size on the implant's mass reduction considering the lattice's safety factor is investigated for the mentioned materials. The selection of a Weaire-Phelan lattice with the optimized safety factor and mass reduction is represented considering all the results. The optimized parameters for Titanium-based alloys are approximately 3.5 mm unit cell size with 0.6 mm beam thickness. However, the CoCr Mo-based alloy requires a thicker beam size (about 0.8 mm) due to lower safety factors.en_US
dc.identifier.citationIzri Z, Bijanzad A, Torabnia S, Lazoglu I. In silico evaluation of lattice designs for additively manufactured total hip implants. Comput Biol Med. 2022 Feb 26;144:105353.en_US
dc.identifier.doi10.1016/j.compbiomed.2022.105353en_US
dc.identifier.pmid35245699en_US
dc.identifier.scopus2-s2.0-85125499772en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2022.105353
dc.identifier.urihttps://hdl.handle.net/20.500.12713/2529
dc.identifier.volume144en_US
dc.identifier.wosWOS:000806845300002en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.institutionauthorBijanzad, Armin
dc.language.isoenen_US
dc.relation.ispartofComput Biol Meden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFEAen_US
dc.subjectHip Implanten_US
dc.subjectLatticeen_US
dc.subjectStress Shieldingen_US
dc.subjectWeaire–phelanen_US
dc.titleIn silico evaluation of lattice designs for additively manufactured total hip implantsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
1-s2.0-S0010482522001457-main.pdf
Boyut:
10.44 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: