Fully bipolar fuzzy linear systems: bounded and symmetric solutions in dual form

dc.authorscopusidTofigh Allahviranloo / 8834494700
dc.authorscopusidSovan Samanta / 56004890200
dc.authorwosidTofigh Allahviranloo / V-4843-2019
dc.authorwosidSovan Samanta / C-6054-2017
dc.contributor.authorMuhammad, Ghulam
dc.contributor.authorAllahviranloo, Tofigh
dc.contributor.authorHussain, Nawab
dc.contributor.authorMrsic, Leo
dc.date.accessioned2025-04-17T14:11:37Z
dc.date.available2025-04-17T14:11:37Z
dc.date.issued2025
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümü
dc.description.abstractThe aim of this article is to develop a new and simple technique to determine the approximate fuzzy solution of the fully bipolar fuzzy linear system of equations (BFLSEs) AU = eta, where U and eta are the triangular bipolar fuzzy vectors and A is either the crisp or fuzzy matrix. The solution of the proposed system is extracted in two fold. First, we obtain the crisp solution of the proposed system. To achieve this, we solve the BFLSEs using(-1,1)-cut expansion. Second, we assign unknown symmetric parameters to each row of this crisp system in(-1,1)-cut expansion. Thus, this system will transform into a system of interval equations. The unknown symmetric parameters corresponding to each element of a bipolar fuzzy vector are obtained by solving such an interval system of equations. Additionally, we demonstrate that the bounded and symmetric solutions (B&SSs) of the fully BFLSEs will reside within the tolerable solution set (TSS) and in the controllable solution set (CSS), respectively. To enhance the novelty of the proposed technique, we present several theorems that serve as a formal foundation for our approach. Furthermore, a numerical example is provided to demonstrate the effectiveness and validity of the proposed technique.
dc.identifier.citationMuhammad, G., Allahviranloo, T., Hussain, N., Mrsic, L., & Samanta, S. (2025). Fully bipolar fuzzy linear systems: bounded and symmetric solutions in dual form. Journal of Applied Mathematics and Computing, 1-26.
dc.identifier.doi10.1007/s12190-025-02401-7
dc.identifier.issn1598-5865
dc.identifier.issn1865-2085
dc.identifier.scopus2-s2.0-85217696514
dc.identifier.scopusqualityQ1
dc.identifier.urihttp://dx.doi.org/10.1007/s12190-025-02401-7
dc.identifier.urihttps://hdl.handle.net/20.500.12713/6288
dc.identifier.wosWOS:001414144100001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorAllahviranloo, Tofigh
dc.institutionauthorSamanta, Sovan
dc.institutionauthoridTofigh Allahviranloo / 0000-0002-6673-3560
dc.institutionauthoridSovan Samanta / 0000-0003-3200-8990
dc.language.isoen
dc.publisherSpringer nature
dc.relation.ispartofJournal of applied mathematics and computing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBounded and Symmetric Solution
dc.subjectControllable Solution Set (CSS)
dc.subjectFully Dual Bipolar Fuzzy Linear System
dc.subjectTolerable Solution Set (TSS)
dc.subjectUnites Solution Set (USS)
dc.titleFully bipolar fuzzy linear systems: bounded and symmetric solutions in dual form
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
s12190-025-02401-7.pdf
Boyut:
626.34 KB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: