3D-Printing of Silk Nanofibrils Reinforced Alginate for Soft Tissue Engineering
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Mdpi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The main challenge of extrusion 3D bioprinting is the development of bioinks with the desired rheological and mechanical performance and biocompatibility to create complex and patient-specific scaffolds in a repeatable and accurate manner. This study aims to introduce non-synthetic bioinks based on alginate (Alg) incorporated with various concentrations of silk nanofibrils (SNF, 1, 2, and 3 wt.%) and optimize their properties for soft tissue engineering. Alg-SNF inks demonstrated a high degree of shear-thinning with reversible stress softening behavior contributing to extrusion in pre-designed shapes. In addition, our results confirmed the good interaction between SNFs and alginate matrix resulted in significantly improved mechanical and biological characteristics and controlled degradation rate. Noticeably, the addition of 2 wt.% SNF improved the compressive strength (2.2 times), tensile strength (5 times), and elastic modulus (3 times) of alginate. In addition, reinforcing 3D-printed alginate with 2 wt.% SNF resulted in increased cell viability (1.5 times) and proliferation (5.6 times) after 5 days of culturing. In summary, our study highlights the favorable rheological and mechanical performances, degradation rate, swelling, and biocompatibility of Alg-2SNF ink containing 2 wt.% SNF for extrusion-based bioprinting.
Açıklama
Anahtar Kelimeler
Hybrid Hydrogel, Silk Nanofibril, Alginate, Three-Dimensional Printing, Mechanical Performances, Rheological Properties
Kaynak
Pharmaceutics
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
15
Sayı
3