3D-Printing of Silk Nanofibrils Reinforced Alginate for Soft Tissue Engineering

dc.authoridZarrabi, Ali/0000-0003-0391-1769
dc.authoridKharaziha, Mahshid/0000-0002-5782-8007
dc.authoridkharaziha, mahshid/0000-0002-8803-105X
dc.authorwosidZarrabi, Ali/U-2602-2019
dc.authorwosidKharaziha, Mahshid/AFK-7123-2022
dc.contributor.authorMohammadpour, Zahra
dc.contributor.authorKharaziha, Mahshid
dc.contributor.authorZarrabi, Ali
dc.date.accessioned2024-05-19T14:42:31Z
dc.date.available2024-05-19T14:42:31Z
dc.date.issued2023
dc.departmentİstinye Üniversitesien_US
dc.description.abstractThe main challenge of extrusion 3D bioprinting is the development of bioinks with the desired rheological and mechanical performance and biocompatibility to create complex and patient-specific scaffolds in a repeatable and accurate manner. This study aims to introduce non-synthetic bioinks based on alginate (Alg) incorporated with various concentrations of silk nanofibrils (SNF, 1, 2, and 3 wt.%) and optimize their properties for soft tissue engineering. Alg-SNF inks demonstrated a high degree of shear-thinning with reversible stress softening behavior contributing to extrusion in pre-designed shapes. In addition, our results confirmed the good interaction between SNFs and alginate matrix resulted in significantly improved mechanical and biological characteristics and controlled degradation rate. Noticeably, the addition of 2 wt.% SNF improved the compressive strength (2.2 times), tensile strength (5 times), and elastic modulus (3 times) of alginate. In addition, reinforcing 3D-printed alginate with 2 wt.% SNF resulted in increased cell viability (1.5 times) and proliferation (5.6 times) after 5 days of culturing. In summary, our study highlights the favorable rheological and mechanical performances, degradation rate, swelling, and biocompatibility of Alg-2SNF ink containing 2 wt.% SNF for extrusion-based bioprinting.en_US
dc.identifier.doi10.3390/pharmaceutics15030763
dc.identifier.issn1999-4923
dc.identifier.issue3en_US
dc.identifier.pmid36986622en_US
dc.identifier.scopus2-s2.0-85151338368en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org10.3390/pharmaceutics15030763
dc.identifier.urihttps://hdl.handle.net/20.500.12713/5252
dc.identifier.volume15en_US
dc.identifier.wosWOS:000959031200001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.ispartofPharmaceuticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmz20240519_kaen_US
dc.subjectHybrid Hydrogelen_US
dc.subjectSilk Nanofibrilen_US
dc.subjectAlginateen_US
dc.subjectThree-Dimensional Printingen_US
dc.subjectMechanical Performancesen_US
dc.subjectRheological Propertiesen_US
dc.title3D-Printing of Silk Nanofibrils Reinforced Alginate for Soft Tissue Engineeringen_US
dc.typeArticleen_US

Dosyalar