Patient-specific computational analysis of hemodynamics in adult pulmonary hypertension

dc.authoridŞenol Pişkin / 0000-0002-8799-9472en_US
dc.authorscopusidŞenol Pişkin / 8636421200
dc.authorwosidŞenol Pişkin / JYJ-0063-2024
dc.contributor.authorPillalamarri, Narasimha R.
dc.contributor.authorPişkin, Şenol
dc.contributor.authorPatnaik, Sourav S.
dc.contributor.authorMurali, Srinivas
dc.contributor.authorFinol, Ender A.
dc.date.accessioned2021-11-22T11:38:50Z
dc.date.available2021-11-22T11:38:50Z
dc.date.issued2021en_US
dc.departmentİstinye Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Bölümüen_US
dc.description.abstractPulmonary hypertension (PH) is a progressive disease characterized by elevated pressure and vascular resistance in the pulmonary arteries. Nearly 250,000 hospitalizations occur annually in the US with PH as the primary or secondary condition. A definitive diagnosis of PH requires right heart catheterization (RHC) in addition to a chest computed tomography, a walking test, and others. While RHC is the gold standard for diagnosing PH, it is invasive and posseses inherent risks and contraindications. In this work, we characterized the patient-specific pulmonary hemodynamics in silico for diverse PH WHO groups. We grouped patients on the basis of mean pulmonary arterial pressure (mPAP) into three disease severity groups: at-risk ([Formula: see text], denoted with A), mild ([Formula: see text], denoted with M), and severe ([Formula: see text], denoted with S). The pulsatile flow hemodynamics was simulated by evaluating the three-dimensional Navier-Stokes system of equations using a flow solver developed by customizing OpenFOAM libraries (v5.0, The OpenFOAM Foundation). Quasi patient-specific boundary conditions were implemented using a Womersley inlet velocity profile and transient resistance outflow conditions. Hemodynamic indices such as spatially averaged wall shear stress ([Formula: see text]), wall shear stress gradient ([Formula: see text]), time-averaged wall shear stress ([Formula: see text]), oscillatory shear index ([Formula: see text]), and relative residence time ([Formula: see text]), were evaluated along with the clinical metrics pulmonary vascular resistance ([Formula: see text]), stroke volume ([Formula: see text]) and compliance ([Formula: see text]), to assess possible spatiotemporal correlations. We observed statistically significant decreases in [Formula: see text], [Formula: see text], and [Formula: see text], and increases in [Formula: see text] and [Formula: see text] with disease severity. [Formula: see text] was moderately correlated with [Formula: see text] and [Formula: see text] at the mid-notch stage of the cardiac cycle when these indices were computed using the global pulmonary arterial geometry. These results are promising in the context of a long-term goal of identifying computational biomarkers that can serve as surrogates for invasive diagnostic protocols of PH.en_US
dc.identifier.citationPillalamarri, N. R., Piskin, S., Patnaik, S. S., Murali, S., & Finol, E. A. (2021). Patient-Specific Computational Analysis of Hemodynamics in Adult Pulmonary Hypertension. Annals of biomedical engineering, 10.1007/s10439-021-02884-y. Advance online publication. https://doi.org/10.1007/s10439-021-02884-yen_US
dc.identifier.doi10.1007/s10439-021-02884-yen_US
dc.identifier.pmid34799807en_US
dc.identifier.scopus2-s2.0-85119502153en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1007/s10439-021-02884-y
dc.identifier.urihttps://hdl.handle.net/20.500.12713/2267
dc.identifier.wosWOS:000720583400002en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.institutionauthorPişkin, Şenol
dc.language.isoenen_US
dc.publisherSpringer Linken_US
dc.relation.ispartofAnnals of Biomedical Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputational Fluid Dynamicsen_US
dc.subjectImage-based Modelingen_US
dc.subjectPulmonary Hypertensionen_US
dc.subjectPulsatile Flowen_US
dc.subjectRight Heart Catheterizationen_US
dc.titlePatient-specific computational analysis of hemodynamics in adult pulmonary hypertensionen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
23.pdf
Boyut:
2.61 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: